Week 2 - Logical Equivalence Table
1 minute read
# |
Name |
Logical Equivalence |
1 |
Identity Laws |
P ∧ T ≡ P |
|
|
P ∨ F ≡ P |
2 |
Domination Laws |
P ∧ F ≡ F |
|
|
P ∨ T ≡ T |
3 |
Idempotent Laws |
P ∧ P ≡ P |
|
|
P ∨ P ≡ P |
4 |
Double Negation Law |
¬(¬P) ≡ P |
5 |
Commutative Laws |
P ∧ Q ≡ Q ∧ P |
|
|
P ∨ Q ≡ Q ∨ P |
6 |
Associative Laws |
(P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R) |
|
|
(P ∨ Q) ∨ R ≡ P ∨ (Q ∨ R) |
7 |
Distributive Laws |
P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R) |
|
|
P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R) |
8 |
De Morgan’s Laws |
¬(P ∧ Q) ≡ ¬P ∨ ¬Q |
|
|
¬(P ∨ Q) ≡ ¬P ∧ ¬Q |
9 |
Absorption Laws |
P ∧ (P ∨ Q) ≡ P |
|
|
P ∨ (P ∧ Q) ≡ P |
10 |
Tautology (Implication) |
P ⟶ Q ≡ ¬P ∨ Q |
11 |
Equivalence (Biconditional) |
P ⟷ Q ≡ (P ⟶ Q) ∧ (Q ⟶ P) |
12 |
Negation Law |
P ∧ ¬P ≡ F |
|
|
P ∨ ¬P ≡ T |